Chapter 2: Modeling Distributions of Data

Key Vocabulary:

- percentiles
- cumulative relative
frequency graphs
- z-scores
- transforming data
- density curves
- median of density curve
- transform data
- mean of density curve
- standard deviation of density curve
- Normal curves
- Normal distributions
- 68-95-99.7 rule
- $\quad N(\mu, \sigma)$
- standard Normal distribution
- standard Normal table
- Normal probability plot
- $\quad \mu \mathrm{mu}$
- σ sigma

2.1 Describing Location in a Distribution (pp.84-103)

1. A percentile is...
2. Is there a difference between the $80^{\text {th }}$ percentile and the top 80% ? Explain.
3. Is there a difference between the $80^{\text {th }}$ percentile and the lower 80% ? Explain.
4. Refer to the "Cumulative Relative Frequency Graphs" section on page 86 to answer the following questions:
a. Explain how to find the relative frequency column.
b. Explain how to find the cumulative frequency column.
c. Explain how to find the cumulative relative frequency column.
5. Explain how to make a cumulative relative frequency graph.
6. What can a cumulative relative frequency graph be used to describe?
7. Answer the four questions for the Check Your Understanding on page 89.
8. Explain how to standardize a variable.
9. What information does a z-score provide?
10. Explain how to calculate and interpret a z- score.
11. What is the purpose of standardizing a variable?
12. Explain the effects of adding or subtracting a constant from each observation when transforming data.
13. Explain the effects of multiplying or dividing by a constant from each observation when transforming data.
14. Summarize the four steps for exploring quantitative data as outlined on page 99.
15. What is a density curve?
16. What does the area under a density curve represent?
17. Where is the median of a density curve located?
18. Where is the mean of a density curve located?
19. Answer questions 1 and 2 for the Check Your Understanding on page 103.

2.2 Normal Distributions (pp.110-128)

1. How would you describe the shape of a Normal curve? Draw two examples.
2. Explain how the mean and the standard deviation are related to the Normal curve.
3. Define Normal distribution and Normal curve.
4. What is the abbreviation for a Normal distribution with a mean μ and a standard deviation σ ?
5. Explain the 68-95-99.7 Rule. When does this rule apply?
6. Answer questions 1-3 for the Check Your Understanding on page 114.
7. What is the standard Normal distribution?
8. What information does the standard Normal table give?
9. How do you use the standard Normal table (Table A) to find the area under the standard Normal curve to the left of a given z-value? Draw a sketch.
10. How do you use Table A to find the area under the standard Normal curve to the right of a given z-value? Draw a sketch.
11. How do you use Table A to find the area under the standard Normal curve between two given zvalues? Draw a sketch.
12. Summarize the steps on how to solve problems involving Normal distributions as outlined on page 120.
13. When is it appropriate to use Table A "backwards"?
14. Describe two methods for assessing whether or not a distribution is approximately Normal.
15. What is a Normal probability plot?
16. How do you interpret a Normal probability plot?
17. When is it appropriate to use the NormalCDF and Inverse Normal functions on the calculator?
