AP Statistics Chapter 4 – Designing Studies

4.1: Surveys and Samples

Population, Census and Sample

- The **population** in a statistical study is the entire group of individuals we want information about. For example, all registered voters in a given county.
- A **census** collects data from every individual in the population.
- A sample is a subset of individuals in the population from which we actually collect data.

Bias

The design of a statistical study shows **bias** if it would consistently underestimate or consistently overestimate the value you want to know.

Convenience Sampling

A **convenience sample** chooses the individuals easiest to reach. This will typically result in a biased sample of like-minded individuals.

Voluntary Response Sample

A **voluntary response** sample consists of people who choose themselves by responding to a general invitation. Voluntary response samples show bias because people with strong opinions (often in the same direction) are most likely to respond.

Simple Random Sample

A simple random sample (SRS) of size n consists of n individuals from the population chosen in such a way that every set of n individuals has an equal chance to be the sample actually selected.

Random Digits

A **table of random digits** is a long string of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 with these two properties:

- 1. Each entry in the table is equally likely to be any of the 10 digits 0 through 9.
- 2. The entries are independent of each other. That is, knowledge of one part of the table gives no information about any other part.

Choosing an SRS

Choose an **SRS** in two steps:

Step 1: Label. Assign a numerical label to every individual in the population.

Step 2: Table. Use Table B to select labels at random.

Stratified Random Sample

To get a **stratified random sample**, start by classifying the population into groups of similar individuals, called **strata**. Then choose a separate SRS in each stratum and combine these SRSs to form the sample.

Cluster Sample

To get a **cluster sample**, start by classifying the population into groups of individuals that are located near each other, called *clusters*. Then choose an SRS of the **clusters**. All individuals in the chosen clusters are included in the sample.

Forms of Bias in Surveys and Samples

- Undercoverage occurs when some members of the population cannot be chosen in a sample.
- **Nonresponse** occurs when an individual chosen for the sample can't be contacted or refuses to participate.
- A systematic pattern of incorrect responses in a sample survey leads to **response bias**.
- The **wording of questions** is the most important influence on the answers given to a sample survey.

4.2: Experiments

Observational Study vs Experiment

- An **observational study** observes individuals and measures variables of interest but does not attempt to influence the responses.
- An **experiment** deliberately imposes some treatment on individuals to measure their responses.
- When our goal is to understand cause and effect, experiments are the *only* source of fully convincing data. The distinction between observational study and experiment is one of the most important in statistics.

Confounding occurs when two variables are associated in such a way that their effects on a response variable cannot be distinguished from each other. Observational studies often fail to provide valid causal links between variables due to confounding

The Language of Experiments

A specific condition applied to the individuals in an experiment is called a **treatment**. If an experiment has several explanatory variables, a treatment is a combination of specific values of these variables.

The **experimental units** are the smallest collection of individuals to which treatments are applied. When the units are human beings, they often are called **subjects**.

Principles of Experimental Design

The basic principles for designing experiments are as follows:

- 1. **Comparison**. Use a design that compares two or more treatments.
- 2. **Random assignment**. Use chance to assign experimental units to treatments. Doing so helps create roughly equivalent groups of experimental units by balancing the effects of other variables among the treatment groups.
- 3. **Control**. Keep other variables that might affect the response the same for all groups.
- 4. **Replication**. Use enough experimental units in each group so that any differences in the effects of the treatments can be distinguished from chance differences between the groups.

Statistical Significance

- An observed effect so large that it would rarely occur by chance is called **statistically significant**.
- A statistically significant association in data from a well-designed experiment *does* imply causation.

Completely Randomized Design

- In a **completely randomized design**, the treatments are assigned to all the experimental units completely by chance.
- Some experiments may include a **control group** that receives an inactive treatment or an existing baseline treatment.
- The response to a dummy treatment is called the **placebo effect**.
- In a **double-blind experiment**, neither the subjects nor those who interact with them and measure the response variable know which treatment a subject received.

Block Design

A **block** is a group of experimental units that are known before the experiment to be similar in some way that is expected to affect the response to the treatments.

In a **randomized block design**, the random assignment of experimental units to treatments is carried out separately within each block.

Matched Pairs Design

- A **matched pairs design** is a randomized blocked experiment in which each block consists of a matching pair of similar experimental units.
- Chance is used to determine which unit in each pair gets each treatment.
- Sometimes, a "pair" in a matched-pairs design consists of a single unit that receives both treatments. Since the order of the treatments can influence the response, chance is used to determine with treatment is applied first for each unit.