AP Statistics Chapter 5 - Probability: What are the Chances?

5.1: Randomness, Probability and Simulation

Probability

The probability of any outcome of a chance process is a number between 0 and 1 that describes the proportion of times the outcome would occur in a very long series of repetitions.

Simulation

The imitation of chance behavior, based on a model that accurately reflects the situation, is called a simulation.

Performing of a Simulation - The 4-Step Process

1. State: Ask a question of interest about some chance process.
2. Plan: Describe how to use a chance device to imitate one repetition of the process. Tell what you will record at the end of each repetition.
3. Do: Perform many repetitions of the simulation.
4. Conclude: Use the results of your simulation to answer the question of interest.

5.2: Probability Rules

Sample Space

The sample space \boldsymbol{S} of a chance process is the set of all possible outcomes.

Probability Models

Descriptions of chance behavior contain two parts:
A probability model is a description of some chance process that consists of two parts:

- a sample space S and
- a probability for each outcome.

For example: When a fair 6-sided die is rolled, the Sample Space is $S=\{1,2,3,, 4,5,6\}$. The probability for a fair die would include the probabilities of these outcomes, which are all the same.

Outcome	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Event

An event is any collection of outcomes from some chance process. That is, an event is a subset of the sample space. Events are usually designated by capital letters, like A, B, C, and so on.

For example: For the probability model above we might define event $\mathrm{A}=$ die roll is odd. The elements of the sample space S that fits this event are $\{1,3,5\}$. The probability of the event A, written as $\mathrm{P}(\mathrm{A})$ is the $3 / 6$ or $1 / 2$. So we would write $\mathrm{P}(\mathrm{A})=0.5$, in decimal form.

The Basic Rules of Probability

- For any event $A, 0 \leq P(A) \leq 1$.
- If S is the sample space in a probability model, $P(S)=1$.
- In the case of equally likely outcomes,

$$
P(A)=\frac{\text { number of outcomes corresponding to event } A}{\text { total number of outcomes in sample space }}
$$

- Complement rule: $P\left(A^{C}\right)=1-P(A)$
- Addition rule for mutually exclusive events: If A and B are mutually exclusive, $P(A$ or $B)=P(A)+P(B)$.

Mutually Exclusive Events

Two events A and B are mutually exclusive (or disjoint) if they have no outcomes in common and so can never occur together-that is, if $P(A$ and $B)=0$.

For example: Using a deck of playing cards and drawing a card at random, the events $\mathrm{A}=$ card is a King, and $\mathrm{B}=$ card is a Queen are mutually exclusive because a single card cannot be both a King and a Queen. Thus we can calculate the probability of A or B as the sum of their individual probabilities - $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.

General Addition Rule

If A and B are any two events resulting from some chance process, then
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Venn Diagrams and Probability

The complement A^{c} contains exactly the outcomes that are not in A.	The events A and B are mutually exclusive (disjoint) because they do not overlap. That is, they have no outcomes in common.
The intersection of events A and $B(A \cap B)$	
is the set of all outcomes in both events A	
and B.	

5.3: Conditional Probability and Independence

Conditional Probability

The probability that one event happens given that another event is already known to have happened is called a conditional probability.

Suppose we know that event A has happened. Then the probability that event B happens given that event A has happened is denoted by $P(B \mid \mathrm{A})$. The symbol "" is read as "given that," so we $\operatorname{read} P(B \mid \mathrm{A})$ as the probability that B occurs given that A has already occurred.

Calculating Conditional Probability

To find the conditional probability $P(A \mid B)$, use the formula

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

The conditional probability $P(B \mid A)$ is given by

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

The General Multiplication Rule

The probability that events A and B both occur can be found using the general multiplication rule

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

where $P(B \mid A)$ is the conditional probability that event B occurs given that event A has already occurred.

Conditional Probability and Independence

Two events A and B are independent if the occurrence of one event does not change the probability that the other event will happen. In other words, events A and B are independent if $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

The Multiplication Rule for Independent Events

If A and B are independent events, then the probability that A and B both occur is

$$
P(A \cap B)=P(A) \cdot P(B)
$$

