AP Statistics Chapter 6 - Discrete, Binomial and Geometric Random Vars.

6.1: Discrete Random Variables

Random Variable

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

Discrete Random Variable

A discrete random variable X has a countable number of possible values. Generally, these values are limited to integers (whole numbers). The probability distribution of X lists the values and their probabilities.

Value of X	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\ldots	\mathbf{x}_{k}
Probability	\mathbf{p}_{1}	\mathbf{p}_{2}	\mathbf{p}_{3}	\ldots	\mathbf{p}_{k}

The probabilities p_{i} must satisfy two requirements:

1. Every probability p_{i} is a number between 0 and 1.
2. $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}=1$

Find the probability of any event by adding the probabilities p_{i} of the particular values x_{i} that make up the event.

Continuous Random Variable

A continuous random variable X takes all values in an interval of numbers and is measurable.
Mean of A Discrete Random Variable
Suppose that X is a discrete random variable whose distribution is

Value of X	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\ldots	\mathbf{x}_{k}
Probability	\mathbf{p}_{1}	\mathbf{p}_{2}	p_{3}	\ldots	p_{k}

To find the mean of X, multiply each possible value by its probability, then add all the products:

$$
\mu_{x}=E(x)=\sum x_{i} \cdot p_{i}=x_{1} \cdot p_{i}+x_{2} \cdot p_{2}+\cdots+x_{k} \cdot p_{k}
$$

6.3: The Binomial Distributions

A binomial probability distribution occurs when the following requirements are met.

1. Each observation falls into one of just two categories - call them "success" or "failure."
2. The procedure has a fixed number of trials - we call this value n.
3. The observations must be independent - result of one does not affect another.
4. The probability of success - call it p-remains the same for each observation.

Notation for binomial probability distribution

\boldsymbol{n} denotes the number of fixed trials
\boldsymbol{k} denotes the number of successes in the n trials
\boldsymbol{p} denotes the probability of success
$\boldsymbol{l}-\boldsymbol{p}$ denotes the probability of failure

$$
\begin{gathered}
\text { Binomial Probability Formula } \\
P(X=k)=\frac{n!}{k!(n-k)!}(p)^{k}(1-p)^{n-k}
\end{gathered}
$$

How to use the TI-83/4 to compute binomial probabilities *

There are two binomial probability functions on the TI-83/84, binompdf and binomcdf
binompdf is a probability distribution function and determines $P(X=k)$
binomedf is a cumulative distribution function and determines $P(X \leq k)$
*Both functions are found in the DISTR menu (2 $2^{\text {nd }}-V A R S$)

Probability	Calculator Command	Example (assume n = 4, p = .8)
$P(X=k)$	binompdf (n, p, k)	$P(X=3)=\operatorname{binompdf}(4, .8,3)$
$P(X \leq k)$	$\operatorname{binomcdf}(n, p, k)$	$P(X \leq 3)=\operatorname{binomcdf}(4, .8,3)$
$P(X<k)$	binomcdf($n, p, k-1)$	$P(X<3)=\operatorname{binomcdf}(4, .8,2)$
$P(X>k)$	$1-\operatorname{binomcdf}(n, p, k)$	$P(X>3)=\mathbf{1}-\operatorname{binomcdf}(4, .8,3)$
$P(X \geq k)$	$1-\operatorname{binomcdf(n,p,k-1)}$	$P(X \geq 3)=\mathbf{1}-\operatorname{binomcdf}(4, .8,2)$

Mean (expected value) of a Binomial Random Variable

Formula: $\mu=n p \quad$ Meaning: Expected number of successes in n trials (think average)
Example: Suppose you are a 80% free throw shooter. You are going to shoot 4 free throws.
For $n=4, p=.8, \mu=(4)(.8)=3.2$, which means we expect 3.2 makes out of 4 shots, on average

6.3: The Geometric Distributions

A geometric probability distribution occurs when the following requirements are met.

1. Each observation falls into one of just two categories - call them "success" or "failure."
2. The observations must be independent - result of one does not affect another.
3. The probability of success - call it p-remains the same for each observation.
4. The variable of interest is the number of trials required to obtain the first success.*

* As such, the geometric is also called a "waiting-time" distribution

Notation for geometric probability distribution

\boldsymbol{n} denotes the number of trials required to obtain the first success
\boldsymbol{p} denotes the probability of success
$\boldsymbol{1}-\boldsymbol{p}$ denotes the probability of failure

Geometric Probability Formula

$$
P(X=n)=(1-p)^{n-1}(p)
$$

How to use the TI-83/4 to compute geometric probabilities *

There are two geometric probability functions on the TI-83/84, geometpdf and geometcdf
geometpdf is a probability distribution function and determines $P(X=n)$
geometcdf is a cumulative distribution function and determines $P(X \leq n)$
*Both functions are found in the DISTR menu ($2^{\text {nd }}-V A R S$)

Probability	Calculator Command	Example (assume p = .8, $\mathbf{n}=\mathbf{3})$
$P(X=n)$	geometpdf (p, n)	$P(X=3)=$ geometpdf(.8, 3)
$P(X \leq n)$	geometcdf (p, n)	$P(X \leq 3)=$ geometcdf(.8, 3)
$P(X<n)$	geometcdf $(p, n-1)$	$P(X<3)=$ geometcdf(.8, 2)
$P(X>n)$	$1-\operatorname{geometcdf}(p, n)$	$P(X>3)=\mathbf{1}$ - geometcdf(.8, 3)
$P(X \geq n)$	$1-\operatorname{geometcdf}(p, n-1)$	$P(X \geq 3)=\mathbf{1}-\operatorname{geometcdf}(.8,2)$

Mean (expected value) of a Geometric Random Variable

Formula: $\mu=\frac{1}{p} \quad$ Meaning: Expected number of n trials to achieve first success (average)
Example: Suppose you are a 80% free throw shooter. You are going to shoot until you make.
For $p=.8, \mu=\frac{1}{.8}=1.25$, which means we expect to take 1.25 shots, on average, to make first

